流速計の簡易校正法

村田 政隆, 松村 一弘, 宮原 則行

A New method of Calibrating the Velocimeter

Masataka Murata, Kazuhiro Matsumura and Noriyuki Miyahara

F

要

流速測定は工業的分野のみならず,地球環境調査においても重要視されており,様々な流速計が開 発され,使用されている。流速計の運用には校正が不可欠だが,一般的に校正はメーカに頼り切って いるのが現状である。本研究では,ユーザが必要なときに簡単に流速計の校正ができることを目的に, 簡易校正方法を検証した。

流速計を搭載した台車を静水中で移動し,流速値と台車速度を比較する方法で校正を実現しようと 考え,小型で安価な装置を試作した。実験では,検定済みの流速計を用い,測定した流速値と台車速 度の比較を行った。

その結果,台車速度と流速値は誤差と見なされる範囲で一致が見られ,本装置の実用性と校正方法 の有効性が確認された。

1. はじめに

流速は流体が保持している動圧やエネルギー, または流量の算出に利用されるなど,流体の運動 状態を知る上では大切な測定要素である。工業分 野においては,キャビテーションの防止等で,流 速を考慮した設計が行われている¹⁾⁻³⁾。また,近 年では地球環境を左右する海洋や河川の調査⁴⁾に おいて,波浪調査,水資源管理のための流量調査, 河床や海浜の変動外力を調べる流況調査等で,流 速は重要な測定項目とされている。

このため様々な種類の流速計が開発され、使用 されている⁵⁾⁻⁷⁾。一般的に流速計を運用する際に は校正が必要とされているが、流速計の校正方法 にはJIS等で定められた標準的な基準はない⁸⁾。 現在、流速計の性能が、基準に対し許容される範 囲にあるかを判定する検定方法には、一般的に次 のような二種類の方法がある。

第一は,一様流を発生可能な装置により,水槽 内に作り出された一定の流れを流速計で計測し, 発生させた流速と流速計で計測した流速の比較を 行う方法。第二は,静水中で流速計を定速移動さ せ,移動速度と計測流速の比較を行う方法である。

第一の方法では、一様流を安定的に発生させる ことが難しく、水流発生装置を含む水槽設備の製 作コストが高い。また、測定位置における流速が 設定流速であるか検証しておく必要がある。こう した理由により、簡素化は極めて困難である。

一方,第二の方法はメーカの社内基準により決 められているにすぎないのが現状であり,多種多 様な流速計を校正するために,装置が非常に大き く広い設置場所が必要となっている。このためユー ザがメーカと同様な校正を行うには,装置の購入 費,場所,維持管理等の問題から困難である。し かし,流速計の仕様によっては,大型な装置は必 要とせず,小型な装置でも校正は可能と考えられ る。例えば,測定部が直径10mm程度に対して,幅 が2mや3mの水槽が必要でないことは容易に想 像できる。

こうした状況を踏まえ、ユーザが容易に校正可 能な方法を実現し得る可能性の高い第二の方法を 選択し,静水中で流速計測定部を一定速度で移動 させることにより流速計を校正する方法での校正 田装置を製作し、検定済みの既存流速計を用いて 簡易校正方法を検証した。

2. 実験装置

ユーザが容易に校正作業を行えるように、図1 に示す小型で安価の校正用装置を製作した。実験 装置は台車システムと実験用水槽で構成される。

図1 実験用水槽

2.1 台車システム

静水中で流速計を定速移動させるために製作し た台車システムの概要を図2に示す。台車は流速 計の測定部が水中に没するように取付具を用いて 流速計を固定できる構造とした。この台車は端部 がベルトに固定されており、モータがプーリを介 してベルトを駆動し移動される。モータには回転 制御性が良好であるステッピングモータを採用し, ベルトはスベリの発生を抑えるために歯付きベル トとした。また、台車速度はコントローラにより ステッピングモータの回転数を調整することで制 御される。

コントローラは表1に主仕様を示した安価な汎 用品を採用した。このコントローラに、モータの 起動,加速,定速,減速,停止等各条件のプログ ラムを、あらかじめパソコンで入力しておき、実 験時に簡単に諸条件に応じたパルス信号列をモー タに付与する。また、ステッピングモータ特有の, 加速度を大きくしすぎると回転が制止する脱調現 象を発生させないために、脱調発生条件を調べ、

台車速度を0.324 m/sから0.616 m/sの範囲に設定 した。本実験用に作成した往復運動のプログラム を表2に示す。また、コントローラの操作により プログラムの選択,台車の移動開始及び強制停止, 原点復帰が行える。

台車基準位置となる原点及び、台車のレール両 端部への衝突防止用に光電センサを設置した。そ の他、台車の移動速度確認を行うため、往復運動 時に定速域である区間の計3ヶ所にも光電センサ を取り付けた。

図2 台車システム概要

入力電源	DC24V
外形サイズ	W161mm×D95mm×H35mm
重量	365g
遺合モーター形式	4 相ユニポーラ型ステッピングモーター
駆動容量	0.3 ~ 3.0 A
回転教設定範囲	37.5 ~ 7500 грт
コントロール入力	シーケンス強制停止、シーケンス動作開始 正転方向リミットセンサ、逆転方向リミットセンサ シーケンスセレクトビット 4 回路
最大出力 電流	1 端子あたり 100mA

表2 台車移動プログラム

プログラム No.	移動区分	移動距離[m]	移動時間[s]	加速度[m/s ²]	遼度[m/s]*
	加速域	0.121	0.787	0.783	0.783 × t
1	定速域	0.634	1.029	0	0.616
	減速域	0.121	0.783	-0.787	-0.787(t-1.816)
	加速域	0.047	0.371	1.310	1.310× t
2	定速域	0.78	1.605	0	0.486
	減速域	0.047	0.367	-1.324	-1.324(t-1.976)
	加速域	0.025	0.233	1.670	1.670×t
3	定連域	0.825	2.119	0	0.389
	減速域	0.025	0.229	-1.699	-1.699(t-2.352)
	加速域	0.017	0.171	2.082	2.082×t
4	定速域	0.841	2.359	0	0.356
	減速域	0.017	0.167	-2.132	-2.132(t-2.530)
	加速域	0.012	0.133	2.436	2.436 × t
5	定速域	0.841	2.620	0	0.324
	減速域	0.012	0.129	-2.512	-2.512(t-2.753)

2.2 実験用水槽

静水貯水容器として図3に示すような、回流発 生器を設置した実験用水槽を製作した。水路は幅 300mm×高さ602mm, 一周約8.5mで水が循環でき る形状とし, 一方の直線部上部には前述の台車シ ステムを設置した。

図3 実験水槽概要

3. 検定済み流速計

簡易校正の精度を検証するため,既存の検定済 み流速計を用いた。今回はレーザ流速計と電磁流 速計の2種類を使用した。

3.1 レーザ流速計

本実験で用いたレーザ流速計の主仕様を表3に 示した,日本カノマックス製のレーザ・ドップラー 流速計 SYSTEM8853である。

レーザ流速計による測定概要を図4に示す。測 定原理は、流体中に存在する微粒子にレーザ光を 照射し、その散乱光に含まれるドップラー周波数 偏移量を検出して、次式により微粒子の速度を求 めるものである^{1).3).9)}。

$$V = \frac{\lambda (f_D \pm f_S)}{2 \sin \theta}$$

V:被測定体の流速 [m/s]
 λ: レーザ波長 [nm] (632.8nm)
 f_D:測定ドップラー周波数 [Hz]

fs : 設定シフト周波数 [Hz]

θ: レーザ交差角(半角) [rad]

レーザ流速計はプローブ,本体,データ処理用 のパソコンで構成される。プローブは図4に示す ようにデュアルビームの後方散乱型で,レーザ照 射と受光が同時に行える構造であり,本体と2本 の照射用光ファイバと1本の受光用光ファイバで 結ばれる。本体はHe-Neレーザ,レーザを遮断す るためのシャッタ,分光プリズム,シフト周波数 を設定するためのブラッグセル,照射用光ファイ バに入射する光軸調整機構,プローブが受光した レーザを電気信号に変換する光電変換部と,その 信号を周波数処理する信号処理部から送られてき た周波数信号を速度データに変換し,リアルタイ ム表示を行いデータを保存する。なお,測定は指 定測定点数を検出した場合,もしくは計測設定時 間を経過した場合に終了する。

表3 レーザ流速計主仕様

	レーザ発信器	10mW He-Ne 直線偏光 ビーム径:0.68mm(e ⁻²)
	プローブ	交差角 10.55°, 焦点距離 25.50mm
光学部	分光方式	分光プリズム ビーム間隔 50mm 分光比 50:50±5%
	ブラッグセル	80MHz 帯域用, 回折効率 70%以上 シフト周波数 0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0MHz
光 電変換 部	フォトマルチプライヤ	量子効率 12%(633nm),周波数応答 30MHz 出力インビーダンス 50Ω
	チャンネル数	1
	入力周波教範囲	1kHz ~ 20MHz
	入力信号	20mV ~ 2V (PM OUT からの出力換算)
信号机带部	ハイパスフィルタ	OFF,10k,20k,50k,100k,200k,500k,1M,2M,5M Hz
	ローパスフィルタ	OFF,50k,100k,200k,500k,1M,2M,5M,10M,20M Hz
	サンプリング周波数	40M,20M,10M,4M,2M,1M,400k,200k,100k,40k Hz
	増幅度	$8 \sim 40$ dB
	データレート	200 バースト/sec
	電源	AC100V±10V 50/60Hz
その他	外形寸法	本体部:530W×200H×600D mm プローブ:長さ約 150mm, 12 ø

3.3 電磁流速計

東京計測㈱製の,主仕様を表4に示すSF-2013, SFT200-14Zを使用した。

電磁流速計を用いた測定概要を図5に示す。測

定原理は、磁界を導電体が横切って運動する時, その電導体には電圧が発生し、電流が流れるファ ラデーの法則を利用し、導電体である水が磁界を 横切って流れる時に発生する起電力を測定するこ とにより流速を測定するものである。

流速計は磁界発生用コイル,電極を内蔵した検 出部および検出電圧信号を速度に変換する信号処 理部により構成される。測定値は本体設置の指示 計により,目視による確認を行うと同時に,出力 コネクタにデータロガを接続し,電磁流速計の出 力電圧と測定時刻の記録を行った。

重量	本体部:約 8.0kg 検出部:約 1.6kg(接続ケーブル 10m 含む)
外形寸法	本体部:430W×150H×350D mm 検出部:長さ 941mm, 電極部:14ø
消費電力	約 15VA
電源	AC100V±10V 50/60Hz
ゼロドリフト	±3mm/s/24h
ノイズレベル	±5mm/s
タイムコンスタント	0.5s, 1s, 10s 3点切換 (移動平均時間)
出力電圧	±5V/FS
非直線性	±2%/FS
测定範囲	±25cm/s, ±50cm/s, ±200cm/s 3点切換
测定方向	X, Y, Z 3成分

表 4 電磁流速計主仕様

4. 実験方法

静水中で流速計を移動させた時, 微視的には流 速計周囲水塊の追従や乱流を発生させ, 巨視的に は静水中に水流を発生させることとなり, 測定の 外乱要因を生ずることが懸念される。しかし, 基 本的には流速計の移動速度が流速として測定され ると考えられる。よって, 流速計を台車に取付け, 台車の移動速度制御を行い, その際の台車速度と 測定速度を比較するものとした。

原理的には,図4及び図5に示すような相対関 係から,流速計による測定速度は台車速度と一致 するはずである。従って,台車速度を確認し,基 準とすることができれば,測定速度から流速計の 精度を知ることができる。

4.1 台車速度の確認

台車の設定速度と実際の速度の確認を実施した。 パソコンで作成した台車移動プログラム上で,台 車の加減速度,移動速度,時間,距離およびモー タ回転数は既知である。

そこで、回転計によりモータ回転数の確認を実施し、モータがプログラム通り回転していることを確認した。次に、ハイスピードビデオカメラを用いて台車の往復運動を撮影し、移動範囲の中心点を台車が通過する移動時間を測定した。初めに基準点となる2点を定め、2点間距離を測定した。彼、画像処理画面上で基準点位置と2点間距離を入力する。これにより画面上での距離が定められ、画像処理機により移動距離及び台車速度が算出される。この結果、画像処理により得られた台車移動時間は、プログラム上での移動時間と約98%で一致した。2%のずれは、基準点間距離は画面上では画素間距離となるため、画素の大きさ及び映像倍率による誤差や基準点間距離の測定誤差が影響していると考えられる。

さらに、台車移動プログラム上、必ず定速域で ある区間に光電センサを3ヶ所設置した。光電セ ンサの出力をデータロガに接続し、出力電圧値と 測定時刻を記録した。あらかじめセンサ間の距離 をノギスで測定しておき、信号が出力された3ヶ 所のセンサの出力時刻から通過時間を求め、速度 を算出した。その結果、99.4%から100.7%で一 致した。この原因として、光電センサからデータ ロガへ入力される信号のサンプリング時間は 0.001秒であり、図2に示す位置検出プレートが 光電センサを横切るタイミングによって、プレー ト端位置やプレート端から少しずれた位置で記録 されたために測定結果に幅が生じたと考えられる。

以上の結果,台車速度はプログラム通りに精度 よく再現されていた。

4.2 流速計による測定

流速計を台車に固定し,水流の発生による誤差 要因の影響検討および速度データの連続収集のた め,875mmの範囲を連続往復運動させた。ただし, 加減速域における速度は時刻とともに変化するた め,流速計の応答速度が遅いことを考慮して台車 速度が一定である定速域で測定を行うこととした。 また,実験用水槽内に浮子を浮かべ,浮子が停止 した状態を静水と定義し,静水状態を確認後,実 験を行っている。

レーザ流速計においては、速度成分周波数を含 むレーザ散乱光を得るため、静水中に微粒子を入 れる必要がある。このため、実験用水槽内に微粒 子を滴下し、図3に示す回流発生器を動作させて 水を十分に循環させ、微粒子分布を均一にし、静 水状態を確認して実験を行った。さらに、台車移 動プログラムにより加減速域でレーザの照射を遮 断するように流速計本体を制御し、定速域のみの 流速を測定した。

一方, 電磁流速計については, 測定値を本体指 示計で確認するとともに、出力電圧をデータロガ に記録した。この記録をパソコンで流速へ変換し た。なお、この出力電圧とは測定部で発生する起 電力を本体内で増幅し、選択した応答時間の移動 平均を行ったのち、さらに直流増幅されて出力さ れている電圧である。また、出力電圧から速度へ 変換する前に出力電圧の基準電位を求めた。基準 電位の測定は台車システムを停止し、静水状態で 5分間放置した後、サンプル時間を0.001秒とし て約1秒間出力電圧を記録した。この間の平均出 力電圧を電磁流速計の基準電位と定め、計測され た出力電圧と基準電位の差を速度として変換した。 さらに、本実験では台車が速度確認用の光電セン サを通過した時間から、プログラム毎の定速域範 囲を求めた。

本実験は表 5 に示す条件で行い,測定部の洗浄 についてはメタノールを使用した。

5. 実験結果と考察

5.1 レーザ流速計の場合

本実験におけるレーザ流速計による測定結果例 を図6に示す。台車速度に対し,測定流速の瞬時 値は,ほぼ90%から110%の範囲に分布したが, 台車速度と異なる0.063 m/s前後の微小流速(ノイ ズ)も観測された。この数値は,周期的でかつ台 車速度に関係なく一定であった。このノイズの影 響により,測定した平均流速は台車速度が速くな るほど,流速計測定平均値が低下した。そこで, このノイズが観測される原因の推定を行った。

表5 電磁流速計を用いた測定の実験条件

	本体アース 移動平均		均测定範囲	測定部の	台車速度[m/s]				
	接続先	時間[s]	流速[cm/s] 洗净		0.616	0.486	0.389	0.356	0.324
実験1	なし	0.5	± 200	なし	0	0	0	0	0
実験2	実験水槽	0.5	±200	なし	0	0	0	0	0
実験 3	実験水槽	0.5	± 50	なし	-	0	-	-	-
実験 4	実験水槽	0.5	±200	あり	0	0	0	-	-
実験5	第三種接地	0.5	± 200	*)	0	.0	-	-	-
実験6	第三種接地	1.0	±200	あり	0	0	-	-	-

○:**実施**, -:未実施

図6 台車速度に対する測定流速例

レーザ流速計で得られる流速は、レーザの波長 および交差角、ドップラー周波数で求められる。 レーザの波長と交差角は一定値であることから、 観測されたノイズより、周波数を逆算して求め、 スペクトラム・アナライザで該当周波数領域の観 察を行った。その結果、問題周波数領域近傍のレ ベルが瞬間的に増大する現象を確認したため、こ の発生原因として考えられる、モータの電気的ノ イズ、レーザ光の乱反射、外乱光、乱流の発生に ついて検討した。

ステッピングモータの電気的ノイズに起因する ものであるかを確認するため、台車システムを停 止し、回流発生器により発生させた流速の検出を 試みた。この結果、同一傾向のノイズが観測され た。次に、レーザ光の乱反射により、ドップラー 周波数以外の周波数を検出している可能性につい て検討した。照射レーザ光が受光部に戻らないよ うに水槽の底に、黒色に塗装した光吸収板を傾斜 をつけ固定し、可能な限り外乱光を遮り、台車を 移動させ流速測定を実施したが、ノイズが観測さ れた。さらに、静水中に没しているプローブによ る乱流発生について検討した。観測されたノイズ は台車速度によらない一定値であり、静水中で流 速計を移動させることにより水流を発生させ、乱 流状態に変化した場合,一定の速度を検出する可 能性はない。これらから,モータの電気的ノイズ, レーザ光の乱反射,外乱光,乱流の影響ではない ものと推定された。

今回の実験では,このノイズが観測される原因 を特定することはできなかった。しかし,実験環 境に関係なく,特定周波数領域のみ一時的に信号 レベルが増大する状況から,流速計本体もしくは 周辺機器で発生した電気的ノイズの影響である可 能性が極めて高いと考えられる。

このため、実験毎にノイズを除去し、測定値を 平均し、表6に示す流速測定結果とした。また、 図5に示した平均流速も同様である。この結果か ら、台車の制御速度と流速計の測定流速は99.2% から102.0%の一致であり、流速にすると最大で 0.012 m/s のずれとなった。

表6 ノイズ除去後の平均流速及び台車移動速度に 対する割合

					実験	回數				
台車	1回日		2回目		3回目		4回目		5回目	
速度 [m/s]	流速 [m/s]	割合 [%]	流速 [m/s]	割合 [%]	流速 [m/s]	割合 [%]	流速 [m/s]	割合 [%]	流速 [m/s]	· 割合 [%]
0.616	0.6159	100.0	0.6102	99.1	0.6213	100.9	0.6222	101.0	0.6218	100.9
0.486	0.4824	99.2	0.4910	101.0	0.4899	100.8	0.4937	101.6	0.4881	100.4
0.389	0.3887	99.9	-			-	-	-	-	-
0.356	0.3575	100.4			-	-	-	-	-	-
0.324	0.3284	101.4	0.3301	101.9	0.3304	102.0	0.3299	101.8	0.3305	102.0

-:未実施

速度とドップラー周波数の関係が厳密な直線関 係であることが特徴の一つであるレーザ流速計は、 本来校正を行わなくても測定値は信頼できるはず である。しかし、流速測定では流体中に分布して いる微粒子の速度を測っているのであって、水そ のものの速度を測定しているのではない。このた め微粒子の移動速度が流速と等しくなる条件を作 ることが重要である。また、散乱光の強さは粒子 が大きいと強く、小さいと弱いので均質な粒径で あることも重要である。今回の実験では微粒子の 大きさなどの諸元については調べていないので、 確たることは述べられないが、前述のように他に 起因するノイズではないので、微粒子の分布状態 と微粒子の大きさのバラッキが影響したものと考 えられる。だが、最大で2%の差であり図6を見 ても台車速度と一致していると考えられる。従っ て、今回考案した簡易校正方法は実験速度範囲内 では有効であるといえる。

5.2 電磁流速計の場合

6つの異なる実験条件毎の台車速度に対する電 磁流速計測定値の例を図7に示す。なお、実験2 から実験5ではほぼ同一の測定結果であったこと から、実験2の結果を代表例として示した。実験 1ではアースの接続を行わず実験を行ったため、 測定結果が波形となる本流速計特有なノイズによ る影響がみられた。実験2以降では本体と実験水 槽とを接続して測定を実施したところ、測定結果 に波形は見られなかった。電磁流速計では本体と 実験水槽との基準電位を揃えなければ、測定結果 に低周波のノイズが現れることがわかった。

図7 電磁流速計測定結果例(台車速度 0.486 m/s)

また、実験2では移動平均時間が0.5秒である のに対し、実験6ではこれを1.0秒として流速を 測定した結果であり、移動平均時間を長くすると 測定値が台車速度に一致するまでの時間が長くな る傾向にあるがことが図7からわかる。次に、実 験2で台車速度が定速になった時刻を0秒とした ときの、台車速度に対する測定値割合の例を図8 に示す。電磁流速計は移動平均値を出力するため、 原理的に定速移動を開始して選択した移動平均時 間後には台車速度と一致するはずである。しかし、 この結果からさらに遅れを生じて一致する傾向に あり、図より1秒後には一致していると見てとれ る。そこで、測定値と台車速度の比較は定速移動 開始1秒後から定速移動終了までとした。

台車の定速移動開始1秒後から定速移動終了時 までの測定速度の分布は図9に示すような正規分 布となる傾向にある。今回,電磁流速計では瞬時 値を得ることが不可能なため,出力電圧値から不 偏分散を用いた母平均の推定を行い,速度の比較 を行った結果を表7に示す。この結果,平均速度 は98.1%から105.4%で一致し,信頼率95%にお いて母平均値の信頼区間は97.9%から105.6%の 範囲内であると推定される。また,全体の95%を 含む範囲の測定値は,平均値に対し±0.040 m/s の範囲内に分布しているとも推定される。

図8 定速期における台車速度に対する電磁流速計 測定値の割合

図 9 実験 2 における電磁流速計測定値の度数分布例 (台車速度 0.486 m/s)

表 7	実験2における平均測定流速及び台車速度に
	対する割合の母平均推定

台車 速度 [m/s]	実験 回数	流速 [m/s]	割合 [%]	不偏 分散	母平均 信頼区間[%]*	全体の 95%を 含む範囲[%]	平均流速に対 する測定流速 分布範囲[m/s]
0.616	1回目	0.6357	103.2	0.438	103.44~102.97	104.53~101.88	± 0.008
	2回目	0.6343	103.0	0.248	103.15~102.79	103.96 ~101.97	± 0.006
0.486	1回目	0.4943	101.7	1.326	101.80~101.62	104.01~99.41	± 0.011
	2回目	0.4893	100.7	1.163	100.76~100.59	102.83~98.52	± 0.010
	3回目	0.4962	102.1	1.100	102.18~102.02	104.20~100.00	± 0.010
0.389	1回日	0.3817	98.1	8.887	98.30~97.95	104.09~92.16	± 0.023
	2回目	0.4100	105.4	3.170	105.51~105.30	108.97~101.85	± 0.014
0.356	1回日	0.3660	102.8	5.004	102.92~102.68	107.27~98.32	± 0.016
	2回目	0.3603	101.2	5.263	101.32~101.08	105.79 ~96.61	± 0.016
0.324	1回日	0.3306	102.0	38.499	102.34~101.73	114.45~89.63	± 0.040

本実験で使用した電磁流速計による流速測定で は、移動平均時間を0.5秒に選択した場合、同一 測定値が1秒以上続いた値でなければ信頼するに 足りないことを留意して使用する必要がある。こ のため、移動平均時間より短時間で変化する流れ の測定には、本実験で使用した電磁流速計は適用 できない。信頼性の高い測定を行うには出力値の 遅れを考慮すれば校正は可能であろう。

6. 結 論

今回,静水中で流速計測定部を一定速度で移動 させることにより流速計を校正する簡易校正装置 を製作し,有効性を検証する実験を実施した結果, 実験範囲内においては精度が高い校正が可能であ り,考案した方法が有効であることがわかった。 また,流速計の測定部が台車に設置可能な構造 であり,静水が確保できれば,測定原理上,測定 方式の異なる流速計においても実験速度範囲内で の校正が可能である。

今後の課題としては,校正可能な流速範囲や加 減速域での校正の有効性の検討など簡易校正方法 を用いた校正条件を確認する。また,測定方式の 異なる流速計を使用した時の有効性を確認する。 なお,様々な流速計を用いて簡易校正方法を検証 し,その結果によっては校正方法の改善を行い, 標準化に結びつけることが可能と考える。さらに, 精度を損なわず軽量化や分割化が可能であれば, 可搬型校正装置の製作も可能と考える。

参考文献

- 1) 村上光清, 部谷尚道: 流体機械 第3版(森 北出版) (1990) P102-117
- 2)空気調和・衛生工学会:空気調和設備計画設計の実務の知識(オーム社)(1995) P279-282
- 3)設備と管理編集部:絵とき空調・給排水の基礎知識(改訂増補版)(オーム社)(1989)
 P182,183
- 4) 木村龍治:機械の研究 第51巻 第2号 (1999) P242-249
- 5) 日本機械学会:技術資料 流体計測法(1991) P142-158
- 6)谷口 修, 堀込泰雄:計測工学 第2版(森 北出版)(1991) P172-182
- 7)中山泰喜:新版 流体の力学(養賢堂) (1992) P160-164
- 8)栗原 昇,寺尾吉哉,中尾晨一,高本正樹:日本機械学会論文集(B編)65巻637号 (1999-9)P3029-3034
- 9)佐藤成行:日本科学工業株式会社 レーザ速 度計(1990) P1-14