角速度センサによる角度計測技術の 実験的検証

村田政隆, 松村一弘, 宮原則行

Experimental Study on Measuring Technique of Angle using Angular Velocity Sensor

Masataka Murata,Kazuhiro Matsumura and Noriyuki Miyahara

要 旨

近年,機械等の性能向上や,機器・人体の運動状態の解明を目的として,物体の位置,姿勢,運動量の 計測・解析技術を確立する必要性が高まっている。物体の傾斜角度の計測に用いられる角度センサの応答 速度は一般的に遅く,速い応答速度が求められる場合には,角度の変位量を等価的に求めるために,角速 度センサが広く使用されている。しかし,等価的な角度計測には無視できない積分誤差が生じる等の問題 も多く,精度の高い補正方法が求められている。

本研究では,振り子運動している物体の角度計測を一例として,角速度センサによる角度計測技術について,測定値の補正方法等を実験的に検証し,簡単な補正方法による角速度センサ利用の有効性を確認した。

1. はじめに

物体の運動を計測する際の座標系には、物体を 主観的な視点で計測するローカル座標系と客観的 な視点で計測するグローバル座標系がある。物体 の運動を外部観測者が直接観測できない場合には、 物体にセンサを取り付けて、ローカル座標系で計 測するのが、一般的である。ローカル座標系の計 測では、物体に計測システムを内包する必要があ るが、計測システムの小型化により、物体の変位 や姿勢の検知、運動解析の他、運動制御技術¹¹へ の応用など、この計測方法が、利用される分野は 多岐にわたる。

ローカル座標系における物体の運動は,直交座 標軸方向の並進運動と軸まわりの回転運動に大別 される。物体の並進運動における変位や速度の計 測には,光や超音波等によるセンサ技術が応 用^{2)、3)}され,加速度については,バネ振動を応 用した半導体センサが,ロボットやカーナビゲー ション等に広く利用されている。

一方,物体の回転運動では,角速度センサは, 入手性も良く広く使用されているものの,角度計 測に用いる傾斜センサや方位センサは,応答速度 や使用環境に制限があり,角加速度センサは,実 用性のあるものは開発段階といえる⁴⁾。また,最 近では拘束系に特化した計測として,角速度セン サを用いた回転運動の計測から並進運動を求める 技法についても,研究されている⁵⁾。

そこで、本研究では、角速度センサの応用性に 着目し、角速度センサによって角度を等価的に求 める技術について、実験的検証を行った。

2. 角度計測実験

2.1 実験装置

一般的に,角速度センサは,ターンテーブルを 利用したメーカ独自の高価で高精度な装置等によ り,校正されているのが一般的なため,実験機の 出力をメーカと同等の精度で確認することは,現 実的には不可能である。

そこで、実験機では、回路構成上、等角速度運動の測定が不可能であることもあり、振り子の等時性に着目し、実験機を振り子運動させることを 考え、図1に示す実験装置を試作した。

本装置は、固定されたアルミ製角パイプにM4の ネジを取付け、ネジ部に実験機をたこ糸で吊す簡 便な構成とした。運動状態の測定は、角速度セン サと傾斜センサの出力を、外付けのデータロガに よってローカル座標系で測定する他、グローバル 座標系での角度変位を捉えることを目的として、 ハイスピードビデオカメラを設置し、追尾画像処 理用のマーカとして、2個のLEDを下図のように固 定した。

図1 回転運動の実験システム

2.2 実験機

2.2.1 センサの選定

計測を目的とした一般的なセンサの選定に関す る主な検討項目には、検出範囲、応答速度、精度、 大きさ及び価格等がある。しかし、これらの項目 全ての必要条件を満足するセンサを得ることは難 しく、計測条件の緩和や妥協、電気回路によるセ ンサ出力形態の改善又は複数センサの組み合わせ 等で対応するのが、現実的である。

また、最近のセンサ仕様の動向は、様々な形状 のものへの組込み、電池による長時間動作等の理 由から、小型で低消費電力のものへと移行してい る。そこで、実験に使用する角速度センサは、小 型で、電源電圧が低く、安価で、入手性が良いも のであることを選定条件として、コリオリカを利 用したものを選定した。さらに、静止角度の計測 や応答性の傾向を確認するため、電解液式の傾斜 センサを併用した。本実験に使用した各センサの 主仕様を、表1に示す。

表1 センサの主仕様

	角速度センサ	傾斜センサ	
型式	CG-L33	model-900	
メーカ TOKIN APP		APPLIED GEOMECHANICS	
電源電圧	+3 V DC +8~24 V DC		
検出範囲	±90 deg/sec	±20 deg	
感度	0.66±20% mV/ deg/sec	100±20% mV/ deg	
応答性	100 Hz	1 Hz	
寸法	8×16×5 mm	50.8×50.8×23.6 mm	

角速度センサの測定原理は、センサ内部の振動 子に予め1次振動を与えておき、回転運動時にセ ンサに作用するコリオリ力によって生じる角速度 に依存した2次振動を検知して、この振動を電圧 信号として出力する。また、角速度センサは、1 次振動の影響により±300mV程度の静止時出力を 生じる。

傾斜センサには,電解液が封入された容器が, 設置されている。測定原理は,センサが傾斜する ことによって,電解液と容器との接触面積が変化 し,これに伴う静電容量の変化を検知して,電圧 信号として出力する。また,本測定原理のセンサ の応答時間は,液面が安定するまでに時間がかか るため,速いものでも1sec程度である。

2.2.2 実験機の製作

実験機では、角速度センサと傾斜センサを、上 方から見て、図2に示すような配置とした。角速 度の静止時出力の影響を除去するため、センサア ンプ基板を、図3に示すように、メーカ推奨のカッ プリングコンデンサを用いた回路構成にしたこと により、直流成分は検知できず、等角速度運動時 の測定は、不可能である。

また,センサの出力信号が微小であることや, センサの検出範囲外での測定を試みる目的から, 試験的に信号の増幅度を約10dB(増幅率 3.05), 出力でのオフセット電圧を1.25Vに定め,回路定 数を決定した。

図2 実験機におけるセンサの配置

-24 -

図3 角速度センサアンプ回路

2.2.3 角速度センサアンプ回路の出力確認

角速度センサアンプ回路の出力特性を確認する ため、実験機と同じ回路定数の試験回路を別途製 作し、入出力電圧特性確認と振幅特性確認の実験 を行った。この実験では、センサ信号とみなす交 流成分に、直流成分を加えてオフセットさせた入 力電圧を、信号発生器によって作り出し、図3に 示した $V_{in} \geq V_{out}$ の電圧を、サンプリング時間1msec でデータロガに記録した。ここで使用したデータ ロガの精度は、±2.5LSBであり、LSB=5mVから、 記録誤差は±12.5mVとなる。

入出力電圧の特性確認実験では、入力電圧の交 流成分周波数を、1Hz、10Hz及び直流成分のみと した。また、入力電圧の急激な変化に対する出力 電圧の状態を確認するため、データロガによる記 録を開始した後、一定時間経過後に入力電圧を印 加した。この時刻を0として、測定時間経過に対 する入出力電圧をまとめた結果の一例を、図4に 示す。

図4 入力電圧及び出力電圧の測定例

実験結果から,入力電圧にステップ信号成分が 加わると,この影響による過渡現象が,出力信号 に観測された。例えば,物体に急激な力が加わっ た場合や,運動している物体が急に停止した場合 に,このような現象が発生すると対応づけられる。

そこで,複雑な運動の測定に対する補正方法へ 応用できる可能性もあることから,本測定系にお ける測定値の補正方法を検討した。

初めに,入力電圧を信号項(交流成分)と入力 オフセット項(直流成分)に分け,出力電圧を過 渡項,定常項,出力オフセット項に分けて,入出 力信号を次式のように定義した。

```
入力電圧: V<sub>in</sub> = v+V
出力電圧: V<sub>out</sub> = -3.05·A·V·e<sup>(-t/τ)</sup> - 3.05v+1.25
v:信号電圧(交流成分) [V]
V:入力オフセット電圧(直流成分) [V]
A:係数
e:自然対数
τ:時定数 [sec]
```

ここで、この測定系では捉えられないが、現実 には入力電圧における直流成分電圧 *V* の立ち上が り初めでも、過渡現象が生じてしまうので、早く ても実験開始1秒後以降の測定値から、Aとτを算 出した。その結果を、表2に示す。

表2 測定値より求めた各種定数

No.	<i>V</i> [V]	v			~
		振幅[V]	周波数[Hz]	^	í.
1	0.188	0.0553	10	1.052	3.526
2	0.188	0.0580	1	1.049	3.538
3	0.128	-	-	1.055	3.535

Aと τ は、実験値を上記の数式に代入して求め た値のため、V, v及びtの値の取り方によって変 化するものの、実験毎に算出したAと τ は、それ ぞれほぼ同じ値が得られた。また、Aは、理論上 は1.00となるはずだが、結果は理論値よりもやや 高めとなった。この理由としては、増幅回路に使 用した金属被膜抵抗の抵抗値誤差±1%を含む誤差、 その他回路素子の誤差及び測定系の誤差が考えら れる。

実際の角速度値を得るためには、出力電圧 V_{out} からセンサの信号電圧である入力電圧 V_{in} を、計算によって求める必要がある。そこで、計算値の精度を確認するため、 V_{out} から入力電圧を求めた値を逆算値 V_{in} 'とし、 $\Delta V_{in} = V_{in}$ '- V_{in} としてまとめた結果を表3に、測定経過時間に対する各値をプロットした一例を図5に、示す。

 ΔV_{in} は正規分布しているとみなせるため、正規 分布の性質から、 V_{in} 対する V_{in} 'のばらつきについ て全体の95%が含まれる範囲を求めた結果、全て データロガの精度範囲内に含まれた。よって、本 測定条件での逆算方法は、精度が高く、有効な手 段であると判断した。

表3 入力電圧に対する逆算値の差

図5 測定経過時間に対する入力電圧と逆算値(10Hz)

次に,振幅特性の確認を行った。本回路は,高 域通過フィルタ回路とみなすことができ,遮断周 波数 f_c と振幅特性|H|は,以下の式より,求め られる⁶⁾。

この式から得た理論値と実験値をまとめた結果 を、図6に示す。

本回路に使用したアルミ電解コンデンサの定格 静電容量許容差は、±20%であり、これを-20%と して考えた場合、実験値は、理論値に良く一致し ていることが確認できた。また、静電容量の定格 値と実験値を比較しても、振幅特性は、ほぼ同じ 傾向と見てとれ、実験機においても試験回路と同 様の振幅特性を持つと考えられる。

本回路において,増幅率が,入力電圧に対する 出力電圧の設計値と99%以上で一致する入力信号 の周波数は,約0.45Hzである。これ以上の周波数 であれば,本回路は,増幅率一定の反転増幅回路 として動作するので,出力電圧から入力電圧を逆 算して求めることで,角速度計測は可能であると 考える。

2.3 実験方法

実験の手順としては,まず,静止状態を目視確 認し,各測定を開始した。次に,実験機を糸がた るまないように手で持ち上げ,数秒間保持した後, 実験機から手を離して数周期振り子運動をさせ, 手で強制的に振り子運動を停止させた。

本実験では、実験機を振り子運動させ、センサ 出力から得られる角速度を積分して求めた算出角 度 *θ*,運動状態を画像に記録して求めた角度 *θ*, 及び傾斜センサの出力角度 *θ*。を比較した。

今回は、ハイスピードビデオカメラの撮影速度 を、500フレーム/secに設定して、実験機を撮影 した。画像処理装置により、撮影された画像中の 2個のLEDを追尾して、測定時間に対するLEDの座 標値(x_1, y_1)と(x_2, y_2)をそれぞれ求め、下式 により、移動角度 θ_1 を求めた。

$$\theta_I(t) = \tan^{-1} \frac{y_2(t) - y_1(t)}{x_2(t) - x_1(t)}$$

なお、ハイスピードビデオカメラによる画像記 録速度を500フレーム/secに設定した場合、120分 用のビデオテープに記録可能な撮影時間は、約14 分であるが、画像処理装置のメモリ容量の都合上、 画像取込フレーム数は、最大で約7500フレームで あったため、本実験条件では、5周期分のデータ しか取得することができなかった。また、本実験 では、*θ、θ、θ*。の単純な比較を目的としてい たため、糸の長さや支点から実験機重心までの距 離などは測定していない。

3. 実験結果

角速度センサーの出力する角速度ωの測定結果 を,図7に示す。図中のaは,実験機を静止位置か ら初期角度への振りはじめ,bは振り子運動開始 時,cは振り子運動終了時,dは実験機を0deg.近 傍へ手で移動し終えた動作を示している。

角速度センサの出力は、0 deg. /secを中心にし て検出範囲である±90deg. /sec以上の振れを示し ながら、振り子運動をよく再現しているようにも 見受けられるが、破線に示す包絡線の変化が、プ ラス側とマイナス側で非対称となっている。

画像処理角度 θ_h ,傾斜センサの出力角度 θ_s , 算出角度 θ をまとめた結果を,図8に示す。

図8 角度の測定結果

画像処理によって求めた角度 θ₁は,実験機の 振り子運動を良く捉えているが,滑らかな波形に はならなかった。そこで,この原因について検討 を行った。

まず,実験結果より, θ,の極値における変化 が激しいことを考えると,この地点で糸の緩み等 を生じ,さらに,この影響を受けて実験機があら ゆる方向に揺れを生じながら振り子運動していた ことが,予想される。次に,測定上の誤差として, 実験機の撮影面とカメラのレンズ面が,平行では なかったことが考えられ,画像処理時に発生した LED光の拡散に依存する追尾点座標値の誤差やそ の他の誤差が挙げられる。

そこで、これらの考えられる原因を包括して、 本実験条件における角度の誤差について検証を行っ た。今回、理想的な振り子運動をしていなくても、 θ_1 の算出に利用した2つのLED間の距離は一定で あることから、LED間距離の誤差を求め、この誤 差を基に、算出角度に与える影響を考えた。測定 結果からLED間の距離を求めた結果、平均値は、 42.36mm、標準偏差は0.32であった。また、距離 の度数分布は、正規分布をなしていたことから、 測定値全体の95%を含むLED間距離は42.36±0.64 mm程度となる。そして、LED間距離の誤差が角度 算出に与える影響を検討した結果, θ_1 の算出値 には、約±0.88deg.の誤差があると推定した。

傾斜センサの出力角度 Øsでは,予め静止状態 による出力を5sec間測定し,この平均値を0deg. とする補正を行った。振り子運動開始前と終了時 の測定値は,Ø」と良く一致しているが,運動中 の測定値が実現象に追従していないことは,測定 結果から明らかである。ただし,本センサの応答 性は1Hzであることから,これは当然の結果であ り,初期値として利用する場合でも,実験機を1 秒以上確実に静止させなければならないことが, 確認できた。

4. 補正方法の検証と考察

4.1 力学的エネルギの保存から考えた補正

理想的な振り子運動では、図9に示すように、 運動エネルギと位置エネルギの総和は、保存され る。

そこで、角速度の測定結果から、実験機の運動 周期を見い出し、角速度の極値が示す時刻の角度 を0deg. と定め、半周期毎に補正した角度を *θ*_aと して、測定時間に対する *θ*_aと *θ*₁をまとめた一例 を図10に示す。

本補正方法では, $\theta_1 \ge \theta_a \ge 0$ 差は極大値側で 最大約2deg.,極小値側で最大約4deg.であった。 角度の極小値側に生じた誤差は,極大値側に比べ て大きいが,角度が右上がりに増加していく傾向 は,解消された。この結果から,半周期毎に補正 する本方法は,長時間の測定データを用いて角度 を算出する場合に対して,有効であると考えられ

図9 振り子運動のエネルギ保存

る。ただし,実際の運動では,エネルギが全て運 動系に保存されることは無いことに留意して,誤 差等を取扱う必要がある。

図10 エネルギ保存の法則を考慮した補正結果例

4.2 運動方程式から考えた補正

図11に示すような理想的な振り子運動を考えた 場合,質点の位置,速度,加速度は下式によって 表される。

図11 質点に作用する力と運動時の各物質量

図11式より,振り子運動では、半径方向の加速 力、コリオリカ、求心力、円周方向の加速力が作 用し¹⁾,糸が伸縮しないと仮定すると、1の速度 と加速度成分は0と考えることができるため、下 式の運動方程式が成り立つ。

接線方向	$ml\ddot{\theta} = -mg\sin\theta$		
法線方向	$ml(\dot{\theta})^2 = F - mg\cos\theta$		

ここで、初期角度を θ_{θ} 、この時の角速度を0として、接線方向の方程式を解くと、周期Tは、下式によって表わすことができる^{8)、9)}。

$$T - \frac{4}{\omega_0} E(k)$$

$$E(k) = \frac{\pi}{2} \left[1 + \left(\frac{1}{2}\right)^2 k^2 + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 k^4 + \dots + \left(\frac{(2n-1) !!}{(2n) !!}\right)^2 k^{2n} + \dots \right]$$

(2n-1) !!= (2n-1) (2n-3) ... $3 \cdot 1$ (2n) !!= 2n(2n-2) (2n-4) ... $4 \cdot 2$

ただし、 $\omega_0 = \sqrt{\frac{g}{l}}, \quad \mathbf{k} = \sin^2 \frac{\theta_0}{2}, \quad \mathbf{n}$ は整数

この結果から、初期条件である *Iと* θ_0 が定まれ ば、振り子運動の周期は、一定値として求められ る。また、 θ が十分に小さく、振り子の等時性が 成立する場合、理想的な運動と考えて、振り子運 動の振幅に変化が起こらないと仮定すると、算出 角度を周期Tの区間で単純移動平均した結果 θ_{44} は、必ず0となる。よって、 $\theta_{44} \neq 0$ の場合、 θ_{44} は、イズ成分であると考え、補正角度 $\theta_b \equiv \theta - \theta_{44}$ とし、 θ_1 と比較した結果の一例を図12に示す。 この結果から、 $\theta_1 \ge \theta_a$ における極値での角度差 は、2deg. 未満となり、 θ_a の結果と比べても θ_b のほうがより θ_1 に近似していることが分かる。 したがって、本補正方法は、振り子の等時性が成 立する時や、周期と振幅が一定の運動である場合 には、精度は高く、有効であると考える。

しかし、実現象では、振り子運動の振幅は減衰 し、その減衰力は、実験条件によって異なる。今 回の補正結果では、*θ*^bにも減衰傾向がみられた が、単純移動平均した値には、減衰成分も含まれ ていた可能性はある。よって、減衰モデルに対し て、本補正方法が与える角度の誤差について、別 途検証し、2次補正等を検討する必要があると考 える。

4.3 減衰力を考慮した補正

本実験では、振り子運動を強制的に静止しなく ても、ある程度の時間が経過すれば、自然に静止 することは、容易に想像できる。この要因として は、空気抵抗やたこ糸に生ずる摩擦力の発生等が、 挙げられる。そこで、粘性減衰が存在する1自由 度のばね振動モデルとして考えたモデル図、運動 方程式、変位及び包絡線の式を図13に示す¹⁰⁰。

このモデルでは、包絡線が時間軸に対称な曲線 となることが分かる。したがって、変位を角度と して考えた場合、図7に示す角速度や、図8に示す 角度から得られる包絡線は、時間軸に対称となる ことが想定されるが、測定結果では対称にはなっ ていない。この原因としては、実験方法の問題や 角速度センサの出力特性等が考えられたため、こ れらをノイズ成分と考えて、測定値に含まれるノ イズ成分の除去方法について検討した。

図13 減衰を考慮した自由振動モデル

まず、図8に示した算出角度 θ から、極大値と 極小値を各3点ずつ選び出し、極大値側の包絡線 $h^{t}(t)$ と極小値側の包絡線h(t)を、3次の近似曲 線として求めた。なお、今回の近似曲線算出には、 Microsoft社製のExcelの機能を利用した。そして、 振り子運動の包絡線をf(t)、ノイズ成分をg(t)と した場合、図14に示す関係が成立すると考え、補 正後の角度を θ_c として θ_l と比較した結果の一例 を、図15に示す。ただし、包絡線の算出に使用し た区間以外は、積分により角度を求めている。

この結果,振り子運動時における θ_c は, θ_l と 良く一致していることが見て取れ, θ_l と θ_c にお ける極値での角度差も,2deg.未満となり,移動

 $h^+(t) = 0.14952 t^3 - 6.10359 t^2 + 83.84298 t - 371.78565$ = g(t) + f(t)

 $h^{-}(t) = -0.09968 t^{3} + 3.62866 t^{2} - 40.65781 t + 117.90050$ = g(t) - f(t)

 $\therefore f(t) = \frac{h^{+}(t) - h^{-}(t)}{2} \quad g(t) = \frac{h^{+}(t) + h^{-}(t)}{2}$

図14 包絡線の近似曲線を用いた補正方法

平均処理した角度 θ_δとほぼ同値であった。以上 より,精密な測定値を必要としない場合には,こ れらの補正方法は,十分に有効であると考える。

図15 減衰を考慮した補正結果例

また、本補正方法では、減衰振動モデルの測定 だけではなく、例えば、無線通信における振幅変 調のノイズ解析にも、簡便な手法として利用でき ると考える。

5.実験方法の検証と考察

本実験では、画像処理角度 θ/と算出角度 θを 比較することによる簡単な校正を行うことはでき なかったので、実験機が理想的な振り子運動をし ていると仮定した補正方法の検討を行った。本実 験装置では、支点を2ヶ所設けたことや、振り子 運動中に糸の伸縮が生じたことが、実験結果に影 響していた可能性がある他、回路特性、測定方法 など様々な要因が複合された系統誤差があると、 考えられる。これらの要因を、測定結果から分析 していく上でも、理想的な振り子運動により近い 状態で、精度の良い測定を行うために必要な、今 後の実験に対する課題等を検討した。 実験装置では、支点を1ヶ所とすることや、実 験機を糸ではなく剛体と見なせる金属などで吊る す等の改善が、必要である。

センサ回路についても、バイパスコンデンサの 付加や、センサ出力の直流成分の利用など、回路 構成を改善することで、電気的ノイズの低減や S/N比の向上を図ることが、可能である。

測定方法については、LED光の拡散による影響 が考えられるため、光源に指向性の良いレーザ光 を採用するなどの対策を行う。また、今回使用し たデータロガの分解能は5mVで、角速度の測定分 解能に換算すると約2.5deg./secとなる。今後は、 実験方法、回路の増幅率及び測定分解能などを考 慮した仕様の計測システムの構築を要する。

また、補正に使用した θ₁はハイスピードビデ オカメラにより500フレーム/secで測定したが、 50フレームおきにデータを抽出し、10フレーム/ secとみなした場合でも、 θ₁の波形は良く再現さ れていることを確認した。このことから、一般家 庭用として普及している30フレーム/secで撮影さ れるビデオカメラを利用しても、ある程度の校正 は、可能であろうと考える。

最後に、これまで述べた補正手続きを統合した 補正方法の検討が必要であると考えるが、実験モ デルは、支点の周りを振動する任意の剛体と考え た物理振り子として、取り扱わなければならない。 そのためには、実験機の質量、重心位置、支点と 質点間の距離を測定し、支点周りの回転モーメン トを考慮しなければならないが、複雑な形状や機 構、複数の材質で構成された物体の重心位置や回 転モーメントを精度良く測定することは、現実的 には不可能ともいえる。しかしながら、今回の簡 便な方法を適用することで、画像処理を利用しな くても、誤差範囲を推定した高精度の角度計測の 校正方法を、確立できる可能性がある。

6.結論

角速度センサにより,等価的に角度を計測する 技術について,実験的な検証を行った結果,系統 誤差を考慮することが,必要不可欠であることが 分かった。そして,周期的な運動状態に限って, 補正を行うことで,測定結果は,十分に有効であ ることを確認した。また,今回使用した角速度セ ンサは,本実験条件においては,仕様上の検出範 囲外でも十分利用できた。

今後は、実験方法や実験機を改善し、振幅や周 期などの実験条件を変えて実験を行い、極値数を より多く測定した上で、ノイズ成分の検証を進め、 実験方法などにフィードバックしながら、補正方 法を検証していく必要がある。そして、振り子運 動モデルでの補正方法を確立することができれば、 等角速度運動や他の複雑な運動を捉えた測定値の 補正も可能になると考えている。角速度センサの 測定値の補正方法を確立することにより、角速度 センサによる角速度及び角度の計測における簡易 的な校正方法の実現も見込める。

また,角速度センサによる等価的な測定技術の 確立は,複雑な回転運動計測や制御の高精度化を 図ることにもつながる。

参考文献

- 1) 松村一弘,宮原則行:青函インターブロック 技術交流事業,青函テクノネットワーク事業 研究論文集,Vol.3(1999),P1-10
- 2) 高橋宏,藤本和巳,下村倫子,小泉智史,廣田薫: 計測自動制御学会論文集,Vol.37,No.8 (2001), P777-785
- 3) 王欣雨, 劉忻, 篠田裕之:計測自動制御学会論 文集, Vol. 37, No. 10 (2001), P905-910
- 4) 西原主計, 窪田一太朗:計測自動制御学会論 文集, Vol. 33, No. 4 (1997), P314-316
- 5) 穂刈真樹,渡辺嘉二郎,栗原陽介,瀬川友輔,鳴 尾丈司:計測自動制御学会論文集,Vol.38,No. 11 (2002),P922-930
- 6)尾崎弘,金田彌吉,谷口慶治,橘啓八郎,浅田勝
 彦:演習例題電子回路[アナログ編](共立出版),(1994),P35-35
- 7) 高野正晴,遠山茂樹:演習機械運動学(サイエンス社),(1984),P15など
- 8) 森田章, 佐藤岩男, 福田義一, 大貫裕司, 奈良久: 物理学コース I (学術図書出版社), (1972), P2 6-29
- 9) 森口繁一, 宇田川銈久, 一松信:数学公式-微 分積分•平面曲線-(岩波全書), (1956), P143, 144, 174, 227
- 10) 宮川松男,鈴木浩平:工業力学(朝倉書店),(1 977), P151-154など