水中無線計測実現へ向けての基礎的研究

村田 政隆 宮原 則行

Fundamental Study on Underwater Wireless Measurement Technology

Masataka Murata and Noriyuki Miyahara

日日

要

情報通信技術の発展に伴い、多くの無線通信機器が開発されているが、計測の分野では、温度計測など 用途が限定され、コストも高い。そこで、利便性や汎用性に優れ、低コストで実現できる無線通信を利用 した計測技術の検討を行うため、安価な無線モジュールとPICマイコンによる実験機を試作し、基礎実験 を行った。

その結果、実験機は、通信速度が2.4kbpsで安定的に動作することを確認し、アンテナ形状のコンパクト化が可能であること、水道水中では実用的な通信の可能性があること、海水中では通信することがほぼ不可能であることが、定量的に明らかとなった。

わが国では、ICタグ(RFID)など、無線通信を 利用した技術開発が盛んに進められているが、無 線通信を利用した計測機は、温度計測など用途が 限定されており、コストもまだ高い状況にある。 そのため、汎用性があり、低コストで実現可能な 無線通信を利用した計測技術の開発が求められて いる。

また、海洋関連機器の研究開発という観点で眺 めると、従来は減衰の関係から水中での無線技術 には音波が広く利用されてきており、電磁波を利 用した水中間や水陸間での通信事例は、極至近距 離のものを含めて殆ど見あたらない。

そこで、電磁波によって無線通信を行う簡便な 実験機を試作し、実験条件を変えて電磁波の電界 強度を測定し、無線通信を利用した計測技術につ いて基礎研究を行った。

はじめに、無線通信手法について検討した。電 磁波による無線通信では、AM(振幅変調)やFM (周波数変調)などが一般的に利用されている。 AMやFMのラジオ受信機は、音声の歪みを許容すれ ば、比較的容易に自作できるが、送信機は非常に 複雑な構造をしている。 高い変調精度の送受信機を自作する場合、回路 素子の選定や配置の配慮、ノイズ対策等が必要と なり、手間とコストを要する。そこで、搬送波の 周波数が固定されてはいるが、1,000円~4,000円 ほどで入手可能な無線モジュールを利用すること にした。今回、表1に示す英国のRF Solution社製 の無線モジュールを使用した。なお、搬送波周波 数には、電波法上において、3mの距離における電 界強度が500 μ V/mまで使用可能な周波数の315MHz を選定した。

表1 無線モジュールの仕様

		送信モジュール	受信モジュール	
첲 풀		AM-RT5-315	AM-HRR3-315	
 寸法		17.78×11.43 mm	38.1×12.7 mm	
価格		1,260円	1,470円	
	Typ.	DC 5V	DC 5V	
電源電流	Typ.	4mA	2. 5mA	
周波数	Nin.	303.8 MHz	200 MHz	
	Typ.	315 MHz	315 NHz	
	Max.	433. 92MHz	450 MHz	
通信速度	Max.	4KHz	3KHz	

次に、PICマイコンと無線モジュールを組み合 わせた計測系について検討した。復調する信号の 信頼性を向上させるため、本通信方式には、AM変 調をデジタル変調させたASK方式を採用した。そ して、無線モジュールの通信速度から、PICマイ コンのシリアル通信速度(RS-232C規格)を2.4 kbpsに定めた。

ここで、10bit分解能の PICマイコンのA/DCを4 チャンネル使用した場合、信号データを二連送照 合しなくても、30msec弱の時間を要する。ゆえに、 計測機としてのサンプリングタイムは50~100 msecに設定するのが妥当である。

以上の検討結果から、図1に示すLED点灯制御用の実験機を試作し¹⁾、無線通信の基礎実験を行った。

図1 実験機(右:送信機 左:受信機)

試作した実験機の動作確認を実施した結果、送 信機のボタンを押している間は、受信機側のLED が点灯し、当センター内における通信距離は、20 ~25m程度であった。

実験機の動作確認後、電波暗室を使用して送信 機の電界強度測定実験を行った。この実験では、 アンテナの長さを変えて電界強度を測定した実験 (実験A)、アンテナの形状や電源を変えて電界強 度を測定した実験(実験B)、送信機水没時の電界 強度を測定した実験(実験C)の三種類を実施し た。

実験Aでは、 ϕ 0.5mmのエナメル線をアンテナに 用いた。本実験では電磁波の波長 λ =1として標準 化し、アンテナ長を2,1,1/2,1/3,1/4,1/5,1/6,1/7, 1/8に定めた。なお、315MHzの電磁波の波長 λ は、 約95.2cmである。

実験Aの結果を図2に示す。測定結果にばらつき はあるが、アンテナ長が1/4波長の時に電界強度 がピークに達しており、1/3波長の電界強度も比 較的強いことが確認できた。例えば、315MHzの電 磁波における1/4波長の長さは、420MHzの電磁波 における1/3波長の長さに等しく、この長さのア ンテナを用いると、315MHzと420MHzの電磁波用途 として共用することができる。このように、電波 暗室を利用すれば、複数の搬送波周波数と感度の 高いひとつのアンテナ長を、効率的に選定できる 可能性がある。

実験Bについては、表2に実験条件と実験結果を まとめて示す。実験条件における電源とは、実験 機に供給している電源を示している。また、アン テナ条件の直線型は、実験Aと同様の直線状エナ メル線を使用し、渦巻型はエナメル線を手作りで **渦巻状に巻いている。基板型アンテナは、プリン** ト基板作製装置によって八角形渦巻状に巻いた線 路を銅箔上に削り出したもので、片面基板と両面 基板のものを用意した。銅板とは、大地から絶縁 された、約 900×520×3mmの銅板を用意し、実験 機をこの銅板の上に置いて、擬似的なアース環境 を作り出す目的で使用した。なお、表中の「放置」 は、銅板を置いただけの状態を示し、「接地」は 銅板と安定化電源のGNDや電池のマイナス端子を 接続した状態を示している。また、表中の測定結 果は、1µV/mを基準として、得られた電界強度の 最大値を示している。

実験条件				電界強度		
覚涙	アンテナ	他因子		水平偏波	垂直偏波	
安定化電源	直線型	垂直	方向	48.6	49.5	
		水平方向		54.3	43.8	
	渦巻型	垂直方向		46.5	30.6	
		水平方向		55.2	45.9	
	基板型	片	<u>ه</u>	48.2	NG	
		両面	放置	25.5	NG	
			接地	34.2	17.4	
	直線型	鋼板	放置	53.1	44.1	
			接地	48.6	36	
電 池	當結刑	鋼板	放置	37.5	41.7	
			接地	53.4	37.5	
単位;dB(μV/m)						

表2 実験Bの実験条件と測定結果

この結果から、アンテナ形状はエナメル線を渦 巻型にしても、電界強度が低下する傾向はみられ なかったことから、アンテナ形状のコンパクト化 が図れることを確認した。しかし、大量複製を目 的とした基板型のアンテナでは、十分な電界強度 を得ることができなかったため、今後はアンテナ のパターン幅や線間ピッチ等の検討を要する。ま た、電源に電池を使用した場合、安定化電源を使 用した場合よりも、電界強度は低下してはいるが、 送受信間距離を考慮すれば、実用的な無線通信が 十分可能である。

実験Cでは、実験Bの結果を踏まえ、渦巻型アン テナを取り付けた送信機を、防水ケースに収めて、 水槽内に水没させ、電界強度を測定した。本実験 の様子を図3に、測定結果を図4に示す。

図3 実験Cの様子

本実験では、水道水と人工海水の二種類の水を 用いた。測定結果から、送信機が水道水中に存在 する場合、空気中に比べ電界強度は低下するが、 水中無線通信の可能性はあると思われる。ただし、 今回は実験に使用した水の飛散等に配慮し、水槽 の寸法が約185×315×245mm程度の比較的小さな 水槽を使用した。そのため、水面と防水ケース間 の鉛直方向距離は最大10cm程度までしか確保する ことができなかった。さらに、水槽壁面と防水ケー ス間の水平方向距離は、概ね5cm程度であること から、水深5cm以上の実験結果は、この水平方向 から発射された電波の強度を測定している可能性 がある。しかし、電波暗室内における水を使用し た実験では、室内の電気系統を漏電させる恐れも あるため、これ以上のスケールでの電界強度測定 は無理である。よって、今後は、電界強度測定は 行わず、フィールドにて無線通信の適用距離を実 測することにより、水中無線通信による計測技術 の可能性について検討すべきと考える。

また、人工海水を使用した場合、数mm厚程度の 水の層があっただけで、電界強度が大きく低下す ることが確認でき、本周波数帯は海中通信に適さ ないことがわかった。よって、この結果からは、 逆に薄い海水の膜があれば、電磁波に対して大き な遮蔽効果が期待できるものと考える。

参考文献

 後閑哲也:電子制御のためのPIC応用ガイド ブック(技術評論社), (2002), P420-438