7. インジウム - スズ系酸化物透明電極の劣化解析

プロセス技術科	○菅原智明、田谷嘉浩、下野 功
(有)シー・エス特機	佐々木貢
(㈱北海光電子	武藤正雄
愛媛大学大学院理工学研究科	内藤俊雄(元:北海道大学大学院理学研究院)

1. はじめに

透明で電気を通す性質の透明電極は、液晶ディスプレイ、プラズマディスプレイ、エレクトロルミ ネッセンス素子、太陽電池、タッチパネルなどに利用されている。中でもインジウムにスズを添加し たインジウム-スズ系酸化物(IT0)は、3.75 eVのバンドギャップを持つ半導体であり、優れた電気 的光学的特性により、現在、主流の透明電極材料として広く利用されている。IT0 膜は、使用環境に よっては劣化することが知られており、例えばエレクトロルミネッセンス(EL)素子については IT0 膜が黒く変色する劣化モードがある。これまでの研究から、IT0 膜の黒色化は、屋外や水分を多く含 む環境において、より速く進行するとされている。また、劣化後の IT0 が酸素不足の組成へと変化し ていること、IT0 の黒色化に伴い蛍光体粒子の表面が酸化されることが、これまでに報告されている。 しかしながら、劣化のメカニズムは複雑で、十分解析されていない。IT0 膜の黒色化は、EL 素子の輝 度を低下させる要因の一つであることから、黒色化を抑制することは素子の長寿命化を実現するため の重要な課題と考え、その劣化解析に取り組んできた。

2. 実験方法

2.1 試料の作製

本研究で用いた EL 素子の断面構造を図1に示す。試料の作製については、背面電極となるアルミニ ウム箔に、チタン酸バリウムインキを塗布して誘電体層を形成した後、硫化亜鉛のインキをさらに塗

布し、発光層を作製した。最後に発光層の上に、ITO 膜付きのポリエチレンテレフタレート(PET)フィ ルムを融着させて EL を作製した。

分析サンプルについては、ITO膜が蒸着されたPET フィルムを EL 素子の表側からピンセットで剥離さ せ、その後、数 cm 角にカットして試料とした。ま た、測定の際はサンプル表面をアースするため、導 電性カーボンテープを試料台から橋渡しし、分析を 行った。

2.2分析

化学状態分析には、複合型 X 線励起光電子顕微鏡(経済産業省 H18~H19 年度地域新生コンソーシア ム研究事業による開発機器、ReviewPEEM)を使用した。特性 X 線 MgK α を励起 X 線としてサンプルに 照射し、パスエネルギー10 eV、ステップ幅 0.1 eV で X 線光電子分光(XPS)分析を行った。スペクト ル測定前には、分析室内でアルゴンイオンを試料に照射し、表面のクリーニングを行った。

光透過率測定には、紫外・可視分光分析装置を使用した。リ ファレンスに PET フィルムを用い、ダブルビーム法で測定を行 った。また、電気的特性測定にはホール測定装置を用い、ファ ン・デル・パウ法によって試料の電気抵抗率、キャリア密度、 移動度を評価した。

3. 実験結果

3.1 黒色化した試料の光透過率とホール測定結果

ITO 膜の光透過率測定結果を図2に示す。劣化していないサンプルについては、波長 380~780 nm の可視光透過率が 80 % 以上を示した。一方、劣化後は光透過率が 50~70 %程度にまで低下した。

図2 ITO 膜の光透過率測定結果

ITO 膜のホール測定結果を表1に示す。サンプルの

表1 ITO 膜のホール測定結果

電気抵抗率は劣化後に約一桁高くなっており、電気抵 抗率の上昇の主な原因は、キャリア密度の低下よりも 移動度の低下であることが分かった。これは、劣化に 伴い ITO の電子構造の禁止帯に様々なレベルの欠陥 準位が形成され、キャリアのトラップとなり、電子の 移動度が低下したためと考えられる。また、劣化によ

試料	電気抵抗率 (Ω·cm)	移動度 (cm ² ·V ⁻¹ ·s ⁻¹)	キャリア密度 (cm ⁻³)
劣化前	$0.9 imes 10^{-3}$	30.5	2.3×10^{20}
劣化後	2.9×10^{-2}	1.6	1.4×10^{20}

って形成した欠陥が可視光を吸収するため、ITO 膜が黒く見えるようになったものと考えられる。

3.2 ITO 膜の化学状態分析結果

黒色化した ITO 膜と劣化していない試料について XPS 分析を行った。帯電によるピークのシフトは

ほとんど見られなかった。図 3 に、In3d5/2 スペクトルと In3d3/2 スペクトルを示す。スペクトルの結合エネルギーは In-0 結合と一致した。劣化前後においてはスペクトルのピー ク位置と形状に違いは見られなかった。しかしながら、オー ジェ電子分光分析の結果、劣化とともに InMNN スペクトルが 変化することが報告されていることから、Inのスペクトルに 関しては、XPS 分析よりもオージェ電子分光分析の方が化学 状態をより反映した分析が可能であると考えられる。

次に、酸素 1s スペクトルを図4に示す。劣化前の ITO 膜の 酸素 1s スペクトルは、530.4 eV にピークがあり、532.9 eV 付近にもサブピークが見られる。文献によると、530.4 eV の ピークが格子間位置の酸素、532.9 eV はサブオキサイドの酸 素に由来すると考えられ、劣化前後の試料の XPS スペクトル を比較した結果、ITO 膜の黒色化に伴って格子間位置の酸素 よりもサブオキサイドの酸素の比率が増えることが分かった。 これらの分析結果から、EL 素子が劣化するにしたがって、ITO 膜が通常の酸化物から亜酸化物へと変化し、同時に欠陥準位 が増加するため、可視光が吸収されるようになり、黒色化が 生じたものと考えられる。また、劣化により生成した欠陥準 位はキャリアのトラップサイトとなり、電子の移動度が減少 したため、電気抵抗が高くなったものと考えられる。

4. まとめ

EL 素子の部材の一つである ITO 膜の劣化について、光透過 率測定、ホール測定、XPS 分析を用いて解析した。ITO 膜の電 気抵抗は、黒色化によって一桁以上高くなった。XPS 分析の 結果、In3d5/2 スペクトルと In3d3/2 スペクトルは劣化前後 で変化が認められなかった。一方、酸素 1s ピークについては 劣化後に高エネルギー側のピークの比率が大きくなっており、 化学状態が変化していることを明らかにした。以上の解析結 果に基づき、電気化学的反応による EL 素子の黒色化を抑制す るためには、蛍光体表面と同様に、ITO 膜表面にも化学的に 安定なバリア層(酸化ケイ素など)を設けることが効果的で あると考えられる。

図3 ITO 膜の In3d5/2 スペクトルと In3d3/2 スペクトル

【謝辞】 本研究は、経済産業省H18~H19年度地域新生コンソーシアム研究事業で開発した分析機器 を使用して実施したものである。関係各位に御礼申し上げます。